Allylsilylation of Carbon-**Carbon and Carbon**-**Oxygen Unsaturated Bonds** *via* **^a Radical Process1**

Katsukiyo Miura, Hiroshi Saito, Takahiro Nakagawa, Takeshi Hondo, Jun-ichi Tateiwa, Motohiro Sonoda, and Akira Hosomi*

Department of Chemistry, University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan

Received June 1, 1998

The carbometalation of alkenes and alkynes is a powerful and selective method for the construction of carbon-carbon and carbon-metal bonds,² in particular, *via* an ionic process. Previously, we have reported a novel type of allylmetalation in which allylstannanes bearing an electron-withdrawing group at the *â*-position react with alkenes and alkynes via a radical process.3 Although radical-based allylation with allylstannanes has been extensively studied as a useful method of both carbon-carbon bond formation and introduction of an easily convertible functionality, 4 the use of tinbased reagents is not always convenient because of the inherent toxicity of organotin compounds. 5 In this context, Chatgilialoglu and Curran *et al*. have recently reported that allyltris(trimethylsilyl)silanes are more environmentally benign radical allylated agents.⁶ Therefore, we attempted to utilize these silicon-based reagents instead of allylstannanes for homolytic allylmetalation.7 We now describe our preliminary results on the allylsilylation of carbon-carbon and carbon-oxygen unsaturated bonds with allyltris(trimethylsilyl)silanes.⁸

First, the reactions of methyl acrylate (**1a**) with the allyltris(trimethylsilyl)silanes **2a**-**^c** were examined (eq 1).

Treatment of **1a** with 4 equiv of **2a** in the presence of AIBN (0.05 equiv) at 80 °C gave the allylsilylated product **3a** in 19% yield along with a diastereomeric mixture of the diester

(4) Keck, G. E.; Yates, J. B. *J. Am. Chem. Soc.* **1982**, *104*, 5829.
(5) Chatgilialoglu, C. *Acc. Chem. Res.* **1992**, *25*, 188.
(6) (a) Chatgilialoglu, C.; Ballestri, M.; Vecchi, D.; Curran, D. P. *Tetrahedron Lett.* **1996**, *37*, 6383. (b) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. *Tetrahedron Lett.* **1996**, *37*, 6387.

Table 1. Allylsilylation of Terminal Alkenes with 2b*^a*

R' `R ² 1	CO ₂ Me Si 2 _b		AIBN PhH, 80 °C $Si = Si(SiMe2)$	R' Si R^2 CO2Me 5
	alkene			
entry	\mathbb{R}^1	\mathbb{R}^2	time/h	product $(\%$ yield) ^b
1	CN	н	4	5a(83)
2	CO ₂ Me	Me	3	5b(78)
3	Ph	н	3	5c(91)
4	$n-C_8H_{17}$	н	24	5d(44)
5	0Bu	н	3	5e (58)
6	SPh	н	$1.5\,$	5d(55)

^a All reactions were performed with a substrate (0.50 mmol), **2b** (2.0 mmol), and AIBN (0.025 mmol) in benzene (2.5 mL) at 80 °C. *^b* Isolated yield.

4, which consisted of two molecules of **1a** and one molecule of **2a**. Introduction of an electron-withdrawing group at the *â*-position of **2a** significantly increased the allylsilylation of **1a**. Thus, the reaction of the *â*-substituted allyltris(trimethylsilyl)silanes **2b** ($R = CO₂Me$) and **2c** ($\tilde{R} = CN$) afforded **3b** and **3c** in 90% and 65% yields, respectively, without the 2:1 adducts such as **4**. A similar substituent effect was observed in our previous work on the homolytic allylstannylation of **1a**. 3b

As shown in Table 1, a variety of terminal alkenes including electron-deficient and electron-rich alkenes readily underwent the allylsilylation with **2b** to give the adducts **5** in moderate to good yields. This result is in sharp contrast to that observed in the homolytic allylstannylation, where the corresponding allylstannane $2b'$ (CH₂=C(CO₂Me)CH₂-SnBu3) hardly reacted with an electron-rich alkene such as 1-decene.3b This distinction is probably because the intermediary *â*-stannylalkyl radical **6**′ rapidly reverts to alkene and stannyl radical before intermolecular addition to **2b**′, while the elimination of the silyl radical from the *â*-silylalkyl radical **6** is slow enough for the allylation with **2b** (eq 2).9

Internal alkenes bearing one electron-withdrawing group such as methyl crotonate and ethyl cinnamate underwent no allylsilylation with **2b**. However, dimethyl maleate (**7**) and dimethyl fumarate (**8**), highly electron-deficient alkenes, were good acceptors of **2b**, and their allylsilylation formed the erythro isomer **9**, exclusively (eq 3). The reactions of maleic anhydride (**11a**) and methyl maleic anhydride (**11b**) with **2b** proceeded with a trans addition to afford only adducts **12a** and **12b**, respectively (eq 4). The trans adduct **12a** could be converted to **10** by treatment with MeOH and K2CO3-MeI, which confirmed that **¹⁰** was a threo isomer. The reversal of diastereoselectivity in acyclic and cyclic systems can be rationalized by considering conformations (**A** and **B**) of intermediary radicals similar to those reported by Giese et al.10 The allylations of the radicals **A** and **B**

⁽¹⁾ Studies on Organosilicon Chemistry. 142.

⁽²⁾ For reviews see: (a) Normant, J. F.; Alexakis, A. *Synthesis* **1981**, 841. (b) Oppolzer, W. *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 38. (c) Negishi, E. *Pure Appl. Chem.* **1981**, *53*, 2333. (d) Knochel, P. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995; Vol. 11, p 159. (e) Knochel, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 865. (f) Yamamoto, Y.; Asao, N. *Chem. Rev.* **1993**, *93*, 2207.

^{(3) (}a) Miura, K.; Itoh, D.; Hondo, T.; Saito, H.; Ito, H.; Hosomi, A. *Tetrahedron Lett.* **1996**, *37*, 8539. (b) Miura, K.; Matsuda, T.; Hondo, T.; Ito, H.; Hosomi, A. *Synlett* **1996**, 555.

⁽⁷⁾ For studies on chemical properties of silyl radicals see: Chatgilialoglu, C. *Chem. Rev.* **1995**, *95*, 1229.

⁽⁸⁾ For studies on the ionic allylsilylation see: (a) Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y. *J. Am. Chem. Soc.* **1997**, *119*, 6781. (b) Yeon, S. H.; Han, J. S.; Hong, E.; Do, Y.; Jung, I. N. *J. Organomet. Chem.* **1995**, *499*, 159. (c) Yeon, S. H.; Lee, B. W.; Yoo, B. R.; Suk, M.-Y.; Jung, I. N. *Organometallics* **1995**, *14*, 2361.

^{(9) (}a) Hanessian, S.; Le´ger, R. *J. Am. Chem. Soc.* **1992**, *114*, 3115. (b) Chatgilialoglu, C.; Ballestri, M.; Ferreri, C.; Vecchi, D. *J. Org. Chem.* **1995**, *60*, 3826.

^{(10) (}a) Bulliard, M.; Zeitz, H.-G.; Giese, B. *Synlett* **1991**, 423 and 425. (b) Giese, B.; Damm, W.; Wetterich, F.; Zeitz, H.-G. *Tetrahedron Lett.* **1992**, *33*, 1863.

Table 2. Allylsilylation of Alkynes with 2b*^a*

a,b See footnotes a and b in Table 1. *^c* The yield of adduct **15**.

with **2b** proceed at the opposite side of the bulky silyl group to give **9** and **12**, respectively.

Various alkynes also underwent the allylsilylation with **2b** (Table 2). The reactions of terminal alkynes gave the trans adducts **¹⁴** in moderate to good yields (entries 1-4). The complete regio- and stereocontrol of the allylsilylation can be explained by the following mechanism (eq 5): to minimize the steric repulsion in the reaction course, (1) tris- (trimethylsilyl)silyl radical adds to the terminal carbon of **13** and (2) the intermediary vinyl radical **16** is allylated at the opposite side to the silyl group.3a,11

Internal alkynes, even those bearing an electron-withdrawing group, exhibited much lower reactivity toward **2b** than terminal alkynes. For example, the reaction of methyl 3-phenyl-2-propynoate (**13e**) resulted in 16% yield of the allylsilylation product **14e** (entry 5).12 The rearranged adduct **15** was also formed as a byproduct by the reaction involving 1,5-hydrogen transfer of the radical intermediate **16**. ¹³ In contrast to this result, it has been reported that

homolytic hydrosilylation of ethyl 3-phenyl-2-propynoate with tris(trimethylsilyl)silane smoothly proceeds under simi-

Table 3. Allylsilylation of Aldehydes and Ketones with 2b*^a*

R 17	٠ R^2 2b	CO ₂ Me Si	AIBN PhH, 80 °C $Si = Si(SiMe3)$	CO ₂ Me OSi R^1 R^2 18		
carbonyl compound						
entry	\mathbb{R}^1	\mathbb{R}^2	time/h	product $(\%$ yield) ^b		
1	Ph	н	8	18a (81)		
2	p -MeOC ₆ H ₄	H	8 $(12)^c$	18b (23) $(45)^c$		
3	p -NCC $_6$ H ₄	н	8 $(12)^c$	18c (49) $(78)^c$		
4	Ph	Me	24	18 $d(21)$		
5	PhCH ₂) ₂	н	24	18 $e(7)$		
6	(CH ₂) ₅		8	18 $f(0)$		

a,b See footnotes a and b in Table 1. *^c* Reaction time and isolated yield when the reaction was performed with intermittent addition of AIBN (0.025 mmol \times 6, every 2 h).

lar reaction conditions.¹⁴ Accordingly, the low reactivity of **13e** is probably due to the sterically impeded addition of the intermediary radical **16** to **2b**.

Moreover, we attempted the allylsilylation of a carbonoxygen double bond with **2b**. Treatment of benzaldehyde (**17a**) with **2b** in the presence of AIBN gave the homoallyl silyl ether **18a** in 81% yield. In the absence of AIBN, no adduct was obtained. It is well-established that allylsilanes react with various carbonyl compounds in the presence of Lewis acids or a fluoride ion to afford allylation products (Hosomi-Sakurai reaction).15 However, allylation of a carbonyl carbon *via* a radical process is unprecedented, to the best of our knowledge.^{16,17} To investigate the scope and limitations of the present methods, several aldehydes and ketones were subjected to the reaction with **2b** (Table 3). These results revealed that benzaldehyde was the most reactive among the examined carbonyl compounds. The use of other aromatic aldehydes led to lower yields of **18**, which could be improved by intermittent addition of AIBN. Aliphatic aldehydes and ketones hardly reacted with **3b**.

In conclusion, we have demonstrated that, in the presence of a radical initiator, **2b** reacts with a wide range of alkenes and alkynes to provide allylsilylation products with high levels of regio- and stereoselectivity, sometimes in high yields,18 and this homolytic reaction is applicable to a new method of carbonyl allylation. Now we are further studying the synthetic utility of the present homolytic allylsilylation.

Acknowledgment. The present work was partly supported by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Japan, Teikoku Chemical Industries Inc., and Pfizer Pharmaceuticals Inc.

Supporting Information Available: Experimental procedures and spectral data for the products (8 pages).

JO981027S

(15) Hosomi, A. *Acc. Chem. Res.* **1988**, *21*, 200. (16) We also found that AIBN promoted allylation of benzaldehyde with α -cyano-substituted allylstannane ($CH_2=C(CN)CH_2SnBu_3$) to afford a homo-

allyl alcohol after destannylation of the crude product (unpublished result). (17) The reactivity of silyl radicals toward carbonyl compounds is wellknown as described in ref 7.

(18) Functionalized substrates are not used in the Lewis acid-mediated allylsilylations (ref 8).

^{(11) (}a) Miura, K.; Itoh, D.; Hondo, T.; Hosomi, A. *Tetrahedron Lett.* **1994**, *35*, 9605. (b) Journet, M.; Malacria, M. *J. Org. Chem.* **1992**, *57*, 3085. (c)
Giese, B.; González-Gómez, J. A.; Lachhein, S.; Metzger, J. O. *Angew. Chem.*, *Int. Ed. Engl.* **1987**, *26*, 479.

⁽¹²⁾ In contrast, the reaction of **13e** with **2b**′ gave the allylstannylation product in 84% yield with the same regio- and stereocontrol. (13) Bogen, S.; Malacria, M. *J. Am. Chem. Soc.* **1996**, *118*, 3992 and

references therein.

⁽¹⁴⁾ Kopping, B.; Chatgilialoglu, C.; Zehnder, M.; Giese, B. *J. Org. Chem.* **1992**, *57*, 3994.